SANS Digital Forensics and Incident Response Blog |
Understanding EXT4 (Part 1): Extents

Hal Pomeranz, Deer Run Associates

EXT4 is a next generation file system replacement for the EXT2/EXT3 family of Linux file systems. It was accepted as
"stable" in the Linux 2.6.28 kernel in October 2008[1]. As of this writing, it's starting to appear as the default file system
in newer versions of several Linux distros. While the developers did try to maintain some degree of backwards
compatibility with EXT2/EXT3, there is quite a bit that's new and different with EXT4. Popular forensic tools like the
Sleuthkit are not fully compatible with these changes in EXT4, although some of their functionality does still work.

While I had read some of the presentations[2] related to EXT4, I was curious about how the EXT4 structures actually
looked on disk and how and why the changes made in the EXT4 file system broke existing forensic tools. So I decided to
fire up the old hex editor and see for myself. This is the first in a series of articles that describes my findings.

Block Addressing

EXT4 has moved to 48-bit block addresses. I'll refer you to the paper cited above for the whys and wherefores of this
decision and what it means as far as maximum file system size, etc. What's really a departure for EXT4 however, is the use
of extents rather than the old, inefficient indirect block[3] mechanism used by earlier Unix file systems (e.g. EXT2/EXT3)
for tracking file content. Extents are similar to cluster runs in the NTFS file system- essentially they specify an initial block
address and the number of blocks that make up the extent. A file that is fragmented will have multiple extents, but EXT4
tries very hard to keep files contiguous.

This new block addressing strategy is one of the things that causes the most problems for existing forensic tools. For
example, look what happens when I create a new file in the EXT4 file system on my laptop and then try to use istat from
the Sleuthkit against it:

echo Here is a new file >testfile
1s -1i testfile

918817 -rw-r--r-- 1 root root 19 2010-12-05 11:08 testfile
istat /dev/mapper/elk-home 918817
inode: 918817

Allocated

Group: 112

Generation Id: 3173542730

uid / gid: @ / @

mode: rrw-r--r--

Flags:

size: ©

num of links: 1

Inode Times:

Accessed: Sun Dec 5 11:08:49 2010
File Modified: Sun Dec 5 11:08:49 2010
Inode Modified: Sun Dec 5 11:08:49 2010

Direct Blocks:

istat is completely unable to decode the new extent structures in the inode, and so no block addresses are displayed. If you
look closely at the output above, you'll also see that the file size is reported as zero bytes, which is clearly wrong. On the
other hand, many of the other values from the inode metadata appear to be correct- owner, group owner, MAC times, etc.

In fact, the EXT4 developers tried very hard to make the EXT4 inode as backwards compatible as possible with the EXT2/
EXT3 inode structure. But changes like extents, new and higher-resolution timestamps, et al have required some
incompatible changes.

Unpacking the EXT4 Inode

I really wanted to look at the EXT4 inode with my hex editor, but that meant figuring out exactly where on disk the inode
for this file resides. Fortunately the superblock and block group descriptor tables in EXT4 are compatible enough to let
fsstat give us the information we need:

https://web.archive.org/web/20160422204448/http://en.wikipedia.org/wiki/Ext4
https://web.archive.org/web/20160422204448/http://en.wikipedia.org/wiki/Ext4
https://web.archive.org/web/20160422204448/http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://web.archive.org/web/20160422204448/http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://web.archive.org/web/20160422204448/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20160422204448/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/

fsstat /dev/mapper/elk-home
FILE SYSTEM INFORMATION

File System Type: Ext3
[...
CONTENT INFORMATION

Block Range: @ - 113971199
Block Size: 4096
Free Blocks: 13506529

BLOCK GROUP INFORMATION

Number of Block Groups: 3479
Inodes per group: 8192
Blocks per group: 32768
[...]
Group: 112:
Inode Range: 917505 - 925696
Block Range: 3670016 - 3702783
Layout:
Data bitmap: 3670016 - 3670016
Inode bitmap: 3670032 - 3670032
Inode Table: 3670048 - 3670559
Data Blocks: 3670033 - 3670047, 3670560 - 3702783
Free Inodes: 3281 (40%)
Free Blocks: @ (0%)
Total Directories: 2

[...]

We know from the istat output above that our inode resides in block group 112. You can also confirm this by looking at the
fsstat output for group 112 and seeing that our inode addess, 918817, falls within the range of inodes for this group.

One of the important changes in EXT4 is that inodes are now 256 bytes, as opposed to 128 bytes as they were in the
EXT2/EXT3 days. That means there are 16 inodes per 4K block in EXT4, so the 8192 inodes per block group should
occupy 512 blocks at the beginning of each group. And you can see that the inode table for our block group occupies the
512 blocks from 3670048 - 3670559. So that all checks out as expected.

But which block is our inode in? The first inode address in Group 112 is 917505. Subtracting this value from 918817, we
find that our inode is 1312 inodes in from the beginning of the inode table. Happily, this puts us right at the beginning of a
block- 1312 inodes divided by 16 inodes/block puts us exactly 82 blocks into the inode table. If the first block address of
the inode table is 3670048, we should find our inode in the first 256 bytes of block 3670130.

I'll use blkcat to dump out this block so that we can more easily look at it in a hex editor:

blkcat /dev/mapper/elk-home 3670130 >blk-3670130

The EXT4 Inode Under the Microscope

While the new EXT4 inode is double the size of the older EXT3 inode structure, the EXT4 developers tried as much as
possible to not alter the way the fields in the first 128 bytes of the inode are used. So for example, you will still find the
low-order 32 bits of the file size in bytes 4-7[4]:

https://web.archive.org/web/20160422204448/http://www.amazon.com/System-Forensic-Analysis-Brian-Carrier/dp/0321268172/
https://web.archive.org/web/20160422204448/http://www.amazon.com/System-Forensic-Analysis-Brian-Carrier/dp/0321268172/

blk-3670130 - GHex = |[O[%

File Edit View Windows Help

0000000OA4 81 00 00 13 00 0O 00 41 E3 FB 4C 41 E3 FB 4C, A..LA..L
00OAAO1041 E3 FB 4C 00 00 00 00 00 00 01 00 08 00 00 00 A..L....uueeenn.. H
0000002000 0O 08 0O 01 00 00 00 OA F3 01 00 04 00 00 00 |v..'veveunneeenn.
0000003000 00 00 60 00 00 00 00 01 00 00 00 BF 88 3A 00 @-:.
0000004000 0O 00 0O 0O 00 00 00 00 0O 00 00 00 00 00 00 |v..veeernnneeen..
000005000 0O 00 OO OO 00 0O 00 OO 00 00 00 00 00 00 00 |..nverunrenn...
0000006000 0O 00 0O 4A 6B 28 BD 00 00 00 0O 00 00 0O 00 R |
0000007000 0O 00 O OO 00 60 00 00 0O 00 00 00 00 00 00 |v...veveuuneeen..
0OOOOO8O/1C 0O 00 00 FO E4 D4 D2 FO E4 D4 D2 FO E4 D4 D2 |ouvvvvnnnnnnnn.
00OOAO9041 E3 FB 4C FO E4 D4 D2 00 00 00 00 00 00 00 00 A..L....eueeen...
POOOOOAG0O 0O 00 0O 0O 00 0O 00 00 0O 00 00 00 00 00 00 |v...vevwunnreen..
POOOOOBOOO 0O 00 OO OO 0O 0O 00 00 0O 00 00 00 00 00 00 |v..veeeunneeen..
000000C000 00 00 00 00 00 00 [90 00 00 00 00 00 00 00 00 |................
00OOOADOIPO OO 00 OO OO 00 0O 00 OO 00 00 00 00 00 00 00 |..uveeuneenn...
POOOOAENIPO 0O 00 OO 0O 00 0O 00 0O 00 00 00 00 00 00 00 |...nveeuneenn...
POOOOOFO00 00 00 0O 0O 00 6O 00 00 00 00 00 00 00 00 00 |v...veewuuneeen.. .

Offset: 3C

In little-endian, we interpret this to mean that our file size is 19 bytes, which is the file size we were expecting. It seems
like we've found the correct inode!

However, because EXT4 uses extents rather than block pointers to track the file content, the 60 bytes from 40-99 that
used to contain the block pointers are now used to hold extent information. Extent structures are 12 bytes in size, so you
would expect there to be a maximum of 5 extents in each inode. However, the first 12 bytes of the extent area (bytes
40-51) are occupied by an extent header structure, so the number of extents that may be contained in an inode is actually

4.

The values in the extent header are broken out as follows:

https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-01-filesize.png
https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-01-filesize.png

blk-3670130 - GHex = |[O[%

File Edit View Windows Help

0000000OA4 81 00 00 13 0O 00 00 41 E3 FB 4C 41 E3 FB 4C, A..LA..L
00PAAO1041 E3 FB 4C 00 00 00 00 00 00 01 00 08 00 00 00 A..L....uueeen.. U
00000020/00 0O 08 0O 01 00 0O 06 01 00 04 co BONGE

0000003000 00 60 00 00 00 00 00 01 00 00 00 BF 88 3A 00 .
00OOOO4000 0O 00 O 0O 00 0O 00 00 0O 00 00 00 00 00 00 |v..veeernneeen..
000005000 0O 00 OO OO 00 0O 00 OO 00 00 00 00 00 00 00 |..nverunrenn...
0000006000 0O 00 0O 4A 6B 28 BD 00 00 00 0O 00 00 0O 00 R |
0000007000 0O 00 O OO 00 60 00 00 0O 00 00 00 00 00 00 |v...veveuuneeen..
0OOOOO8O/1C 0O 00 00 FO E4 D4 D2 FO E4 D4 D2 FO E4 D4 D2 |ouvvvvnnnnnnnn.
00000A90/41 E3 FB 4C FO E4 D4 D2 00 00 00 00 00 00 00 00 A..L....ueeevn...
POOOOOAG0O 0O 00 0O 0O 00 0O 00 00 0O 00 00 00 00 00 00 |v...vevwunnreen..
POOOOOBOOO 0O 00 OO OO 0O 0O 00 00 0O 00 00 00 00 00 00 |v..veeeunneeen..
000000C000 00 00 00 00 00 00 [90 00 00 00 00 00 00 00 00 |................
00OOOADOIPO OO 00 OO OO 00 0O 00 OO 00 00 00 00 00 00 00 |..uveeuneenn...
POOOOAENIPO 0O 00 OO 0O 00 0O 00 0O 00 00 00 00 00 00 00 |...nveeuneenn...
POOOOOFO00 00 00 0O 0O 00 6O 00 00 00 00 00 00 00 00 00 |v...veewuuneeen.. .

Offset: 3C

A

Broken down by byte offset, we have:

Bytes 40-41: Magic number (OxF30A = 62218)
42-43: Number of extents (0x0001 = 1)
44-45: Max number of extents (0x0004 = 4)
46-47: Depth of tree (0x0000 = 0)

48-51: Generation ID (©x00000000 = 0)

The magic number is designed to differentiate between different extent implementations. As new features are added, the
magic number can change to ensure backwards compatibility with older implementations. We will discuss the "Depth of
tree" and "Generation ID" values in future articles in this series.

Per our previous discussion, the maximum number of extents in the inode is 4, and bytes 44-45 document this. In the
future, of course, the implementers may elect to store additional extent structures in the inode, so burning two bytes here
is a place-holder to allow future functionality. Bytes 42-43 tell us that this file only has a single extent.

The next 12 bytes tell us what we need to know about this extent:

https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-02-extentheader.png
https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-02-extentheader.png

blk-3670130 - GHex = |[O[%

File Edit View Windows Help

00000000A4 81 00 00 13 00 00 00 41 E3 FB 4C 41 E3 FB 4C |........ A..LA..L|.
0000001041 E3 FB 4C 00 00 00 00 00 00 01 00 08 00 00 00, A..L............ J
0000002000 00 08 00 01 00 00 00 OA F3 01 00 04 00 00 00 |................
0000003000 00 00 00 00 00 00 00 |[@INeEIco 60/8F 88 3A 00 ?.:.
0000004000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
0000005000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000006000 00 00 00 4A 6B 28 BD 00 00 00 00 00 00 00 00 JK(.........
0000007000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000801C 00 00 00 FO E4 D4 D2 FO E4 D4 D2 FO E4 D4 D2| ...eovvnvnnnnn..
0000009041 E3 FB 4C FO E4 D4 D2 00 00 00 00 00 00 00 00 A..L............
000000A000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
000000BOGO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
000000CO00 00 00 00 00 0O 0O [0 60 00 00 00 00 00 00 00|
000000DOEO 00 00 00 00 00 60 00 00 00 00 00 00 00 00 00 |................
0000OOEO0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000OFOP0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................ .

Offset: 3C

A

Again, the byte offset breakdown is:

Bytes 52-55: Logical block number (0x0000)
56-57: Number of blocks in extent (©x0001)
58-59: Upper 16 bits of physical block address (©x0000)
60-63: Lower 32 bits of physical block address (@x@03A883F)

The logical block number tells us where this extent begins relative to the start of the file. This becomes a lot more
important when you have multiple extents. But since we only have a single extent in this file, it must start from the
beginning of the file which is logical block zero.

Next we have two bytes that tell us how many blocks are included in this extent. It's a small file, so we only need one
block.

The next six bytes give us the physical block number of the first block in the extent- i.e., where the extent actually begins
on disk. Now modern computer systems want their values to align on 16-, 32-, or 64-bit boundaries and 48-bits is
something of a problem. So the 48-bit block address is actually represented as two values: first two bytes giving the upper
16 bits of the block address and then four bytes containing the low-order 32 bits of the address. So in our example, we
would interpret the block address as 0x0000003A883F, which is block number 3835967.

Let's see if we're right about that:

blkcat /dev/mapper/elk-home 3835967
Here is a new file

I love it when a file system comes together!

Since there are no further extents (per the extent header we unpacked earlier), the next 36 bytes of the inode are null. It
would be interesting to experiment and see if these unused fields could be used to hide data.

Deleting the File

Let's see what happens in the inode when the file is deleted:

rm testfile

blkcat /dev/mapper/elk-home 3835967

Here is a new file

blkcat /dev/mapper/elk-home 3670130 >blk-3670130-after_delete

https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-03-extent.png
https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-03-extent.png

As you can see, the data blocks are not cleared when the file is deleted. This is standard behavior for file systems.
But what happens in the inode when it is deallocated?

blk-3670130-after_delete - GHex =[] [x

File Edit View Windows Help

000000004 81 00 00 00 00 35 F6 FB 4C 35 F6 FB 4C| [........ 5..L5..L.
0000001035 F6 FB 4C 00 00 00 00 00 00 01 00 00 60 00 00 5..L............ |
0000002000 00 68 00 01 00 60 00 OA F3 00 00 04 00 00 00
0000003000 00 00 00 00 00 00 60 00 60 00 60 00 00 00 00
0000004000 00 @9 00 00 00 00 00 00 00 00 00 00 00 00 00
00000056000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000006000 00 00 00 CC 6B 28 BD 00 00 00 00 00 00 00 00 K(eounnnnn.
0000007600 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000080/1C 00 00 00 E8 AO 00 04 E8 AO 00 04 E8 AD 00 04
0000009035 F6 FB 4C E8 AO 00 04 00 00 00 00 00 00 00 00 5..L............
000000A000 00 00 00 00 00 60 00 00 00 00 00 00 00 00 00
000000BOAO 00 00 00 00 00 60 00 00 00 00 00 00 00 00 00
000000C600 00 00 00 00 00 00 00 00 60 00 00 00 00 00 00
000000DO0O 00 00 00 00 00 00 00 00 60 00 00 00 00 00 00
0000OOEG00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000FE00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Offset: 0

~ iz

There are a number of changes:

e The file size value is set to zero
e The number of extents value in the extent header is likewise zeroed
e The extent itself is also cleared

Clearing the extent means that we lose the physical block address of the first block as well as the length of the extent. In
other words, there's no meta-data left in the inode that will help us recover the deleted file. This behavior is analogous to
EXT3 clearing the block pointers in the inode when the inode is deallocated. Unfortunately, this means that we're forced
to rely on traditional file-carving methods to recover deleted files, which makes life much more difficult.

More to Come

This has been a high-speed introduction to the new and wonderful world of EXT4 extents. But there's more complexity
that needs to be discussed. For example, what happens when a file becomes so fragmented that it requires more than the
four extent structures that can fit in the inode?

Also, there are some additional values in the EXT4 inode that forced its expansion to 256 bytes. This includes a new
timestamp- EXT4 now has a file creation timestamp like NTFS- as well as higher precision timestamps (64-bit values
instead of 32-bit). We'll talk about all of this in future episodes!

[1] Wikipedia: "EXT4", http://en.wikipedia.org/wiki/Ext4

[2] "The New EXT4 File System: Current Status and Future Plans", http://www.kernel.org/doc/ols/2007/0ls2007v2-
pages-21-34.pdf

[3] "Understanding Indirect Blocks in Unix File Systems", http://computer-forensics.sans.org/blog/2008/12/24/
understanding-indirect-blocks-in-unix-file-systems/

Hal Pomeranz is an Independent IT/Security Consultant, a SANS Institute Faculty Fellow, and a GCFA. He has an

https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-04-after_delete.png
https://web.archive.org/web/20160422204448/https://blogs.sans.org/computer-forensics/files/2010/12/blk-3670130-04-after_delete.png
https://web.archive.org/web/20160422204448/http://en.wikipedia.org/wiki/Ext4
https://web.archive.org/web/20160422204448/http://en.wikipedia.org/wiki/Ext4
https://web.archive.org/web/20160422204448/http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://web.archive.org/web/20160422204448/http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://web.archive.org/web/20160422204448/http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://web.archive.org/web/20160422204448/http://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://web.archive.org/web/20160422204448/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20160422204448/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20160422204448/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20160422204448/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20160422204448/http://www.amazon.com/System-Forensic-Analysis-Brian-Carrier/dp/0321268172/
https://web.archive.org/web/20160422204448/http://www.amazon.com/System-Forensic-Analysis-Brian-Carrier/dp/0321268172/

unhealthy attachment to hex editors.

