EXTS3 File Recovery via Indirect Blocks « Threat
Research Blog

by Hal Pomeranz

Recovering complete file images from unallocated space on Linux systems can be a tricky problem.
The EXT3 metadata structures-index nodes or inodes for short-are mostly zeroed out when they are
deallocated. During this process, all of the inode's block pointers (that would normally be used to
access the file data when the file was allocated) are lost. The original file contents will still exist in
unallocated data blocks in the file system-at least until those blocks are reused-but there's no "map"
to reconstruct those data blocks into the original file.

Historically, file recovery in this scenario has relied on "file carving" tools such as Foremost. These
tools leverage the fact that the data blocks that make up a file tend to be allocated consecutively. If
you know a byte "signature" that marks the beginning of a particular type of file, you can often
recover most or all of the file by collecting subsequent blocks. If the file format also has a
"signature" that marks the end of the file, that can be used as a marker for when to stop collecting
blocks.

However, there are some known issues with this technique when recovering data from Linux
systems:

 Being a largely text-oriented operating system, many common Linux file artifacts lack good
file "signatures". And even for common binary file types such as GZIP data where a file
signature can be developed, lack of a consistent "end of file" marker makes accurate recovery
of these files a challenge.

e EXT3 uses data blocks in the middle of a file's data run to store metadata. These so-called
indirect blocks are used to store pointers to data blocks once a file grows too large to be
represented by the relatively small number of block pointers in the inode. These indirect
blocks will cause file corruption if they are extracted along with the regular data blocks that
contain file content.

e Attempting to recover a file by gathering consecutive blocks breaks down when the file
becomes fragmented across multiple areas of the disk.

The problem of indirect blocks in the middle of the file content is addressed by tools like Foremost
by simply skipping over the indirect block and ignoring its contents. Actually, Foremost will skip
the first indirect block that normally occurs in the 13t data block in the run but fails to remove
later indirect blocks (the double and treble indirect block chains) from the recovered image, again
leading to file corruption on recovered files larger than 4MB or so.

Simply skipping over or attempting to edit out the indirect block data from the recovered file is
probably the wrong thing to do in any event. After all, the block pointer metadata in the indirect
blocks provide a map to the location of large chunks of file content from the original file. I have
developed a couple of simple command-line tools to find and use the indirect block data to more
accurately recover files from unallocated space.

Finding and Using Indirect Blocks

https://web.archive.org/web/20170314204951/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20170314204951/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/
https://web.archive.org/web/20170314204951/http://computer-forensics.sans.org/blog/2008/12/24/understanding-indirect-blocks-in-unix-file-systems/

The figure below shows the typical block layout for a file in a Linux file system. From the start of the
file, there are 12 data blocks which are normally indexed by the 12 direct block pointers in the
inode-assuming 4K blocks, this addresses the first 48K of the file. Once the file grows beyond 48K
in size, the operating system uses the next block as an indirect block for storing block pointers and
then resumes using the subsequent blocks to store data. A single 4K indirect block can store 1024 4-
byte block pointers, which handles file sizes of up to 4MB (plus the 48K indexed by the direct block
pointers). When the file grows beyond 4MB+48K in size, double and even treble indirection can be
used-indirect blocks that address other indirect blocks and so on.

12 diroit blocks 1024 dalta blocks
(Y)
3 | \
Beginni
cgln-nlng 1t indirect Doubleindirect
of file
block

One key fact here is that the indirect blocks are at predictable locations relative to the beginning of
the file and to each other:

o Unless the file is heavily fragmented, the first indirect block should be 13 blocks from the
beginning of the file. If you have a reliable file signature for the type of file you're searching
for, locating the first indirect block should be straightforward.

e Subsequent indirect blocks should occur in the block immediately following the last data
block referenced by any given indirect block. Because EXT3 null fills slack space, you will
know that you've reached the end of the chain of indirect blocks when you encounter and
indirect block with null block pointers.

Another important fact is that the first block pointer in an indirect block will typically reference the
very next block in the file system. In other words, if you have an indirect block at block number
1000, then the first data block that it points to will be block 1001. This gives us a signature for the
indirect blocks themselves: look for blocks whose first four bytes decode to the address of the next
block. While this property doesn't necessarily have to hold true-and there is also the possibility of
false-positives-real-world testing has shown that this signature is very, very good at correctly
identifying indirect blocks.

Combining all of these ideas has led to the development of two tools. The first is a tool called frib
(File Recovery via Indirect Blocks) which when given the block number of the beginning of a file or
of an indirect block will attempt to recover the complete file contents from that point. The simplest
case is to use frib in conjunction with another tool like sigfind from the Sleuthkit which will let you
locate "beginning of file" signatures:

sigfind -b 4096 1F8BO80O ext3-example.img
Block size: 4096 Offset: © Signature: 1F8B0800
Block: 251904 (-)

Block: 252096 (+192)

Block: 252293 (+197)

Block: 252599 (+306)

frib ext3-example.img 252599 >recovered.gz
tar ztf recovered.gz

perl-5.10.1/patchlevel.h
perl-5.10.1/Configure

https://web.archive.org/web/20170314204951/https://www.fireeye.com/content/dam/legacy/ammo/ext3blocks.jpg
https://web.archive.org/web/20170314204951/https://www.fireeye.com/content/dam/legacy/ammo/ext3blocks.jpg
https://web.archive.org/web/20170314204951/http://sleuthkit.org/
https://web.archive.org/web/20170314204951/http://sleuthkit.org/

Here we're feeding sigfind a common signature for GZIP-ed files, and it locates a number of blocks
that start with this signature. Choosing one of the block numbers returned by sigfind, we invoke frib
which emits the recovered file data to the standard output (which we redirect into a file). Because
this is a test example created for validating the tool, we know that the recovered file is a GZIP-ed tar
archive, and we can use the tar command to verify that we've recovered the entire archive without
corruption.

But what about cases where you're attempting to recover data formats that have no strong
beginning of file signature (e.g. Linux log files)? I've developed a second tool, fib (Find Indirect
Blocks), that uses the "block N whose first four bytes decode to N+1" signature discussed above to
locate potential indirect blocks. If we run fib against our test image, we get output like this:

fib ext3-example.img
585
611
34828
53
37288
193
37290
10
38924
432
41609
35
43020
2066
61452
43
131598
8181
139799
98
229956
75
251916
179
252108
184
252305
293
252611
3436
256063
485

The first column of output is the block numbers of the potential indirect blocks identified by our
signature. The second column is the total number of data blocks in the fully unpacked indirect block
chain starting at the given block. As you can see, fib was able to detect the double indirect block
chains following blocks 43020, 131598, and 252611 and reassemble lists of blocks beyond the 1024
blocks referenced in the initial indirect block (fib will also properly recognize treble indirect block
chains and reassemble those as well, though there are none in this example image).

Block 252611 should be the first indirect block of the .tar.gz file starting at block 252599 that we
recovered in the previous example. Let's use frib again to recover the same file starting with the
indirect block address this time:

frib -I dblks ext3-example.img 252611>indblks
1s -1lh *blks

-rw-r--r-- 1 hal hal 48K 2011-01-16 08:09 dblks
-rw-r--r-- 1 hal hal 14M 2011-01-16 ©8:09 indblks

cat dblks indblks >recovered2.gz

1s -1 recovered*.gz

-rw-r--r-- 1 hal hal 14118912 2011-01... recovered2.gz
-rw-r--r-- 1 hal hal 14118912 2011-01... recovered.gz
diff recovered*.gz

When invoked with the "-I" option, the block address passed in to frib is assumed to be the address
of the first indirect block in the file. This means that normally the preceding 12 blocks should be the
first 48K of the file. The argument to the "-I" option is the name of a file where the contents of those
12 blocks should be placed. The remainder of the file referenced by the indirect block chain is
written to the standard output, which again we're redirecting into a file in order to capture the data.
If you believe that the first 12 blocks captured by frib genuinely are the first 48K of the file, then you
can concatenate the files we captured in order to recreate the original file image. As you can see
from the Is and diff output above, the resulting file is identical to the one we recovered in the first
example where we used sigfind to find the beginning of file marker.

In fact, the assumption that the 12 blocks before the indirect block are the start of the file is true so
frequently that frib allows you to specify "-I -" in order to emit those 12 blocks on the standard
output along with the rest of the data recovered by frib:

frib -I - ext3-example.img 252611 >recovered3.gz
diff recovered.gz recovered3.gz

Both frib and fib are implemented as Perl scripts that use the blkcat utility from the Sleuthkit to
actually dump the recovered data blocks (fib also requires TSK's fsstat utility). So you must have the
Sleuthkit installed to make use of these tools. However, the advantage here is that frib and fib can
work against both live systems and any sort of image file format supported by the Sleuthkit. You
may use the standard Sleuthkit "-0" option for specifying a sector offset of the beginning of a file
system in a disk image with both frib and fib (indeed this option is simply passed through to the
underlying Sleuthkit tools).

NOTE: Both frib and fib assume little-endian byte ordering. If you're using these tools on a file
system image from a big-endian machine, specify "-B" to use the correct byte ordering. Both frib
and fib support the "-d" flag for dumping debugging output.

Because EXT3 null fills slack space at the end of the trailing block in a file, files recovered by frib-
which works on a block-by-block basis-will typically have extra trailing nulls at the end. Usually this
is not much of an issue for most Linux file formats. However, frib does support the "-t" flag to
"trim" trailing nulls from the end of the file. This is particularly useful when using frib to recover
text files such as Linux log files. NOTE: For various binary formats, blindly stripping off nulls at
the end of the file may produce a corrupted file image.

Some Additional fib Features

String searching is a common forensic technique for zeroing in on potentially interesting data. It is
relatively straightforward to compute the address of a block that contains a string of interest, but
recovering the entire file from that point is more difficult.

fib supports "-a" and "-A" options for locating the address of a given block inside other potential
indirect blocks in the file system. For example, if you had a string of interest in block 123456 of an
image file called "myfile.img", then "fib -a 123456 myfile.img" would return the address of the first
block in the image that contains the 123456 encoded as a 4-byte hex value. Because there is the

potential for false-positives, the "-A" option will return all blocks in the file system that contain the
specified address.

fib itself is not terribly fast, so you can specify a range of blocks to search:

fib ext3-example.img 196608 229375 # scans only blocks
196608-229375 (inclusive)

fib ext3-example.img 229376

scans from 229376 to

end of image

You may use block ranges either in fib's normal mode or with the -a/-A options.

Searching block ranges can be very useful in EXT43 file systems because data blocks are allocated in
"block groups" and EXT3 tries very hard to allocate all files in a given directory to the same block
group. So if you locate a string of interest or other file signature in a given block, chances are the
rest of the file is contained in blocks in the same block group. You can constrain your fib searches to
the much smaller collection of blocks in the local block group-typically only 32K blocks. Block
group ranges can be viewed in the output of TSK's fsstat tool.

Conclusion

Mandiant has used these tools with good success on actual customer engagements. We hope you
will find them a useful addition to your arsenal. Questions about the tools, bug reports, and
suggestions should be directed to Hal.Pomeranz@mandiant.com. Download the tools.

