SANS Digital Forensics and Incident Response Blog |
FreeBSD Computer Forensic Tips & Tricks

Hal Pomeranz, Deer Run Associates

While Linux seems to have captured much of the mind-share for Unix-like operating systems, the
fact is that there are an awful lot of BSD machines out there, particularly in web-hosting and other
Internet-facing environments. So you're likely to run into one of these systems during an incident
response or digital forensics investigation at some point. If you've only ever analyzed Linux
systems, you may encounter a few bumps in the road when you start looking at your first BSD
system. In an effort to smooth out some of those potholes, I'm going to demo a few useful
techniques using a sample FreeBSD image I created.

BSD Disk Labels

Let's suppose somebody just handed you a raw disk image that they took from a FreeBSD machine.
Not being Unix savvy, all they can do is hand you the raw disk image and the associated checksum
value. The rest is up to you.

After verifying the image integrity, you decide you're going to start by dumping out the DOS
partition table:

mmls -t dos freebsd.img

DOS Partition Table

Offset Sector: o

Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 000000OVVO 00OPRRR1l Primary Table (#0)
01: ----- 0000000001 0000062 0POPPVVL62 Unallocated
02: 00:00 0000000063 0033554114 0033554052 FreeBSD (OxA5)
03: ----- 0033554115 0033554431 0000000317 Unallocated

The DOS partition table shows us that there's only a single partition on this disk (plus a couple of
unallocated areas which are going to turn out to be just wasted space). This already might make you
a little suspicious- most Unix-like operating systems reserve a raw disk partition for a swap area.

In fact, the DOS partition table isn't telling us the whole story. BSD systems set up another partition
table- generally referred to as the BSD disk label— at the start of the main BSD disk partition. mmls
will happily parse the BSD disk label if we specify "-t bsd" and as long as we give it the correct sector
offset value:

mmls -t bsd -o 63 freebsd.img
BSD Disk Label

Offset Sector: 63

Units are in 512-byte sectors

Slot Start End Length Description
09: ----- 0000000000 0000000062 0000000063 Unallocated
01: o0 0000000063 0001048638 0001048576 4.2BSD (0x07)
02: 02 0000000063 0033554114 0033554052 Unused (0x00)

03: o1 0001048639 0002029262 000980624 Swap (0x01)

https://web.archive.org/web/20160513225438/https://blogs.sans.org/computer-forensics/author/halpomeranz/
https://web.archive.org/web/20160513225438/https://blogs.sans.org/computer-forensics/author/halpomeranz/
https://web.archive.org/web/20160513225438/http://www.deer-run.com/~hal/
https://web.archive.org/web/20160513225438/http://www.deer-run.com/~hal/

04: 03 0002029263 0004615886 0002586624 4.2BSD (0x07)

05: 04 0004615887 0005664462 0001048576 4.2BSD (0x07)
06: 05 0005664463 0033554114 0027889652 4.2BSD (0x07)
07: ----- 0033554115 0033554431 0000000317 Unallocated

Now that looks like a more standard partition layout for a Unix-like system. We can see multiple
partitions and a swap area.

Mounting UFS Partitions

Let's try looking at that first partition with fsstat to see what kind of file system we're dealing with:

fsstat -o 63 freebsd.img
FILE SYSTEM INFORMATION

File System Type: UFS 2

Last Written: Mon Jan 25 ©3:58:20 2010
Last Mount Point: /

Volume Name:

System UID: ©

[...]

UFS2 is the most common file system for modern FreeBSD releases. The good news is that Linux
has excellent support for UFS file systems, so you can do analysis of FreeBSD images on a Linux
machine.

However, there are a couple of special options that you need to use when mounting a UFS file
system on a Linux box. You need to not only specify the file system type with "mount -t ...", you also
have to supply the "-o ufstype=..." option in order to specify the exact type of UFS file system you're
dealing with. And of course you'll have to calculate the correct "offset=" value for the mount
command (it's in bytes, not sectors, as I covered in my previous article on the subject).

Putting it all together, calculating the offset and doing the mount command might look something
like this:

expr 63 * 512

32256

mount -t ufs -o ufstype=ufs2,ro,loop,offset=32256 freebsd.img /mnt

1s /mnt

bin cdrom COPYRIGHT dist etc libexec mnt rescue sbin tmp var
boot compat dev entropy 1lib media proc root sys usr

First we use expr to calculate the byte offset of the start of the first partition: it's the sector offset
(63, as shown in the mmls output) times the sector size (512 bytes/sector, also shown in the mmls
output).The resulting value, 32256, is going to get plugged into the mount command with "-o
...,offset=32256".

Next we set up our mount command. We specify the UFS file system and specific UFS type with "-t
ufs -o ufstype=ufs2,...". Obviously, the read-only option ("ro") is important from a computer
forensics perspective. The "loop" argument means we'll be using a loopback mount to mount a disk
image file as a file system. Then we have our offset argument, the name of the disk image file, and
where we want this partition mounted. We can then get a directory listing of our mount point and
confirm that the mount succeeded and we can see files.

Mounting the other disk partitions is just a matter of repeating our original mount command with
different offsets and mount points. However, we'd like to know where those partitions should be

https://web.archive.org/web/20160513225438/https://blogs.sans.org/computer-forensics/2010/01/11/using-image-offsets/
https://web.archive.org/web/20160513225438/https://blogs.sans.org/computer-forensics/2010/01/11/using-image-offsets/

mounted in order to form a file system that correctly replicates the original layout of the system.
You could get the last mount point information by running fsstat on each slice, but since we have
the root file system already mounted, we can just dump the /etc/fstab file from the disk image:

cat /mnt/etc/fstab

Device Mountpoint FStype Options Dump Pass#
/dev/ad@slb none swap SW (%] (%]

/dev/ad@sla / ufs rw 1 1

/dev/ad@sle /tmp ufs rw 2 2

/dev/ados1f /usr ufs rw 2 2

/dev/ad@s1d /var ufs rw 2 2

/dev/acdo /cdrom cd9o660 ro,noauto 0 0

BSD uses letters rather than numbers to distinguish disk slices, so you'll have to do a little mental
conversion. Going by the above fstab, BSD partition #4- /dev/adosid in the fstab- is /var, partition
#5- /dev/adosie- is /tmp, and partition #6- /dev/adosif- is /usr. So now you know where to put
everything when you mount it.

About Blocks and Fragments

Let me show you one more interesting aspect of computer forensics on a BSD system. Here's an
excerpt from the fsstat output on the /var partition from our image:

fsstat -o 2029263 freebsd.img
FILE SYSTEM INFORMATION

File System Type: UFS 2
Last Written: Mon Jan 25 04:01:14 2010
Last Mount Point: /var

[...]
CONTENT INFORMATION

Fragment Range: @ - 646655
Block Size: 16384

Fragment Size: 2048

Num of Avail Full Blocks: 77661
Num of Avail Fragments: 315

[...]

Notice that the block size for the file system is 16K, but the fragment size is 2K. In traditional
Berkeley file systems, each block is made up of smaller fragments which are fully addressable and
can be used to store individual files that are smaller than the block size. If you look at a typical EXT
file system on Linux, you'll see that the block size and the fragment size are the same, making the
smallest disk unit on EXT effectively be an entire block. Of course, EXT blocks are generally smaller
(usually 4K), so this isn't quite as wasteful as you might think.

Why is this difference between the block size and fragment size relevant to your computer forensic
investigations on FreeBSD? Well, if you've got a string of interest at a particular byte offset, is your
tool of choice going to address the location of that string in terms of blocks (divide by 16K) or
fragments (divide by 2K)?

Turns out that the Sleuthkit at least addresses things in terms of fragments. Let me prove it to you.
Here's our string hit:

6148096 # This file lists authorizations for user haldaemon

We're going to divide the byte offset by the fragment size and then use blkcat to dump the fragment.

If I'm telling you the truth, we should see our string of interest in the blkcat output:

expr 6148096 / 2048

3002

blkcat -o 2029263 freebsd.img 3002

This file lists authorizations for user haldaemon

#

File format may change at any time; do not rely on it. To manage
authorizations use polkit-auth(1) instead.

scope=grant:action-id=org.freedesktop.policykit.read:when=1263385148:granted-by=0

Bingo! From here we could work back to to the actual file name using the TSK tools, but that's an
article for another day perhaps.

Conclusion

I hope this article helps illuminate some of the differences between FreeBSD and Linux analysis.
There are other differences, of course, largely dealing with different file system layouts ("Where
were those crontabs again? Oh yeah, /var/cron/tabs/..."). But this should be enough to get you
moving in the right direction.

Hal Pomeranz is an Independent IT/Security Consultant, a SANS Institute Faculty Fellow, and a
GCFA. And, yes, he swings both ways... when it comes to Unix-like operating systems, that is. Hal
will be teaching Security 508: Computer Forensics, Investigation, and Response at SANS Virginia
Beach, May 24-29.

https://web.archive.org/web/20160513225438/http://www.sans.org/virginia-beach-2010-cs/description.php?tid=4037
https://web.archive.org/web/20160513225438/http://www.sans.org/virginia-beach-2010-cs/description.php?tid=4037
https://web.archive.org/web/20160513225438/http://www.sans.org/virginia-beach-2010-cs/
https://web.archive.org/web/20160513225438/http://www.sans.org/virginia-beach-2010-cs/
https://web.archive.org/web/20160513225438/http://www.sans.org/virginia-beach-2010-cs/
https://web.archive.org/web/20160513225438/http://www.sans.org/virginia-beach-2010-cs/

