
Copyright © Hal Pomeranz

Hal Pomeranz
hal@deer-run.com
@hal_pomeranz
http://deer-run.com/~hal/

1

More Linux and Windows command-line tips at blog.commandlinekungfu.com

2

Learning the Linux/Unix shell (or Windows Powershell) can make you vastly more
productive.

But unlike Windows, Unix-like operating systems are everywhere: Linux and MacOS,
Android, *BSD, Solaris, AIX, HP-UX, ChromeOS, …

And Unix powers critical systems– from massive hypervisors running thousands of
application spaces powering the Internet, to small embedded devices in your home.

3

We start with simple string searching—like folks probing for vulnerable applications
on my web site. Of course my web site is completely static, so this doesn’t do them
much good. But it does allow me to collect a nice cross-section of the web
vulnerabilities currently being exploited in the wild.

4

But the web log format is cluttered. Since the log fields are delimited with white
space, awk is a natural way to extract the fields we want– like the requestor here in
field #1.

http://blog.commandlinekungfu.com/2012/12/awk-ward.html
http://blog.commandlinekungfu.com/2013/01/an-awk-ward-response.html

5

But the real power of Unix– the Unix “design religion” really– is to tie together
primitive constructs to quickly create ad hoc analyses. Here’s one of my favorite
idioms, the “command-line histogram” aka “… | sort | uniq –c | sort –n”.

• The first “sort” takes the input and puts it into alphabetical order (“sort –n” would
sort numerically)

• Then “uniq -c” counts the number of times each unique value appears in the list
(you need to “sort” the input first, so all the duplicate entries end up next to each
other)

• The final “sort –n” sorts the list numerically based on the counts produced by
”uniq –c” (use “sort –nr” for a descending numeric sort)

You can use this idiom for all sorts of inputs. So useful!

http://blog.commandlinekungfu.com/2010/08/episode-108-acess-list-listing.html
http://blog.commandlinekungfu.com/2011/10/episode-159-portalogical-exam.html

6

But awk gives us trouble if we want to isolate the user-agent data from the last field
in each log. That’s because the user-agent data contains spaces, and awk reads it as
multiple fields.

Fortunately we have sed (the “Stream EDitor”) for massaging our input in more
complicated ways. But there’s a learning curve here to master regular expressions to
do pattern-matching like I’m doing in this example.

http://blog.commandlinekungfu.com/2009/05/episode-38-browser-count-torture-
test.html

7

Ho hum. Environment variables are boring, right?

Nope! You can have a lot of fun with environment variables…

http://blog.commandlinekungfu.com/2009/04/episode-28-environment-list.html
http://blog.commandlinekungfu.com/2009/07/episode-52-prompts-pushing-it.html

8

This is one of my favorite hacks that comes in very useful for my forensic practice.
You’re often dealing with data from many different time zones. The TZ environment
variable lets you choose the time zone that gets used for time stamps in command
output in your current shell.

Time zone names are actually file paths relative to (in Linux) /usr/share/zoneinfo, e.g.
“TZ=US/Eastern” or even “TZ=Europe/Paris”.

http://blog.commandlinekungfu.com/2009/11/episode-67-time-lords.html

9

Another important environment variable is SSH_AUTH_SOCK. This variable stores the
path name to a Unix socket that your SSH clients use to communicate with your ssh-
agent process. ssh-agent stores the secret keys you use for SSH public key
authentication.

Once your keys are stored in ssh-agent, you no longer have to type your passphrase
to decrypt your key. Your SSH clients simply get the ssh-agent process to decrypt the
challenges they receive that have been encrypted with your public key.

Because ssh-agent stores secret keys in memory, they are vulnerable. For a discussion
of attacks against keys in memory, read

https://blog.netspi.com/stealing-unencrypted-ssh-agent-keys-from-memory/

But an easier attack is to just access a user’s ssh-agent process and impersonate them
to other systems. And this is an attack that also works against “agent forwarding”
when the actual keys are not present on the local system.

10

“lsof” (LiSt Open Files) is one of my favorite command line tools. Here we are using it
to show Unix sockets (“-U”) connected to SSH daemon processes (“-a -c sshd”)
owned by various users. Apparently user “hal” is doing some agent forwarding here.

Assuming I’ve already broken root on the system, I simply set my SSH_AUTH_SOCK
environment variable to the socket path I see in the output of lsof. Now I’m talking to
the ssh-agent process for user “hal”. “ssh-add –l” lists the fingerprints for any keys
that may be stored in this agent—I’m just doing this to confirm that there are some
keys stored by the user.

http://blog.commandlinekungfu.com/2009/04/episode-22-death-to-processes.html
http://blog.commandlinekungfu.com/2009/11/episode-69-destroy-all-
connections.html
http://blog.commandlinekungfu.com/2010/01/episode-76-say-hello-to-my-little.html
http://blog.commandlinekungfu.com/2010/01/episode-78-advanced-process-whack-
mole.html
http://blog.commandlinekungfu.com/2014/12/episode-180-open-for-holidays.html

11

But where do these keys allow me to go? One way to get some ideas is to look at the
known_hosts file for user “hal”. This file stores the public keys of all hosts this user
has connected to from this machine. Chances are these are the places the user
regularly hops to from here. And if they are using agent forwarding, then chances are
the keys in the ssh-agent process are helping them get there.

Notice that we can specify an alternate username before the hostname or IP address
we want to connect to. And just that easily I have logged in as “hal” on another
system (getting root from this point is up to you). I’m even using “-A” to continue the
chain of agent forwarding so that I can continue to exploit the user’s ssh-agent
process on the remote system!

http://blog.commandlinekungfu.com/2009/05/episode-31-remote-command-
execution.html
http://blog.commandlinekungfu.com/2012/01/episode-164-exfiltration-nation.html

12

Of course, after all these shenanigans your command history is totally going to give
you away. So we need to get rid of it.

“export HISTSIZE=0” will unlink your shell history in memory. Note that string
searching through memory will still recover at least portions of that shell history, but
it won’t be easily reconstructed with something like Volatility’s linux_bash plugin.

Unfortunately, when your shell exits, your bash_history file will be zeroed out, which
is a big clue you were doing something hinky. So I also recommend “export
HISTFILE=/dev/null” which will avoid any updates to the bash_history on disk.

I’ve had several people point out that “history -c” will also clear your shell history.
However, “history -c” clears your shell history right now but it will continue to
accumulate again as you type more commands. “export HISTSIZE=0” means shell
history is totally disabled for the rest of this session.

http://www.deer-run.com/~hal/DontKnowJack-bash_history.pdf

13

Let’s suppose you did want to trash your bash_history, or some other sensitive data.
Just removing the file leaves the file contents floating around in unallocated blocks
until something overwrites those blocks. To be on the safe side, overwrite the file
yourself with shred before removing the file. “shred –u” overwrites and removes the
file in a single command. Note that remnants of the file may still reside in the file
system journal for some time.

Suppose you removed a file and forgot to use shred? If you want to overwrite data in
unallocated clusters, just write a big file that eats up all of the free space left on disk.
The dd command will exit when all the disk space is consumed, and then the rm
command just removes the big file. Easy-peasy!

http://blog.commandlinekungfu.com/2009/05/episode-32-wiping-securely.html

14

There’s so much more you can do with the Unix shell, but we’re running out of time.
There is more to read at:

blog.commandlinekungfu.com
deer-run.com/~hal/

15

